sábado, 25 de julho de 2020


MOVIMENTO FLUXAL ALEATÓRIO DE GRACELI -

EM TODOS OS FENÔMENOS SE ENCONTRE ESTE MOVIMENTO, E QUE É UM DOS CAUSADORES DOS SALTOS QUÂNTICOS,  E COM INFLUENCIA SOBRE OS MOVIMENTOS ALEATÓRIOS, CADEIAS , COMO TAMBÉM INTERFERE NOS SPINS E CAMINHOS  DE PARTÍCIULAS,  E QUE É EM SI UM NÚMERO QUÂNTICO POIS TEM AÇÃO DIRETA SOBRE AS ESTRUTURAS ELETRÔNICAS E COMPORTAMENTO DE TODOS AS PARTÍCULAS.

E COM ISTO É TAMBÉM UMA DIMENSIONALIDADE GRACELI [FAZENDO PARTE DO SISTEMA DECADIMESNIONAL [+] DE GRACELI [DEZ OU MAIS DIMENSÕES DE GRACELI [NÃO NECESSARIAMENTE INCLUINDO O ESPAÇO E TEMPO].

E COM ISTO TAMBÉM SE TORNA MAIS UMA CATEGORIA DO SISTEMA  SDCTIE GRACELI.

OS FLUXOS ESTÃO PRESENTES EM TODA FÍSICA, ELETRICIDADE, DILATAÇÕES, TERMODINÂMICA, ELETROMAGNETISMO, CAMPOS AFINS E SUAS UNIFICAÇÕES [ELETROFRACA], E OUTRAS., QUANTICA E RELATIVIDADE, TEORIA DE PARTÍCULAS, DE ESTADOS DA MATÉRIA E ESTADOS QUÂNTICO, INCERTEZAS E EXCLUSÕES,.

ONDE SE FORMA ASSIM, O ÁTOMO DE GRACELI, COM ESTRUTURA ELETRÔNICA DE FLUXOS E NÚMEROS ATÔMICOS VARIÁVEIS CONFORME A INTENSIDADE E FREQUÊNCIA DESTES FLUXOS..

E DENTRO DO SISTEMA SDCTIE GRACELI.







DENTRO DO SISTEMA GRACELI SDCTIE , SE TEM MAIS DE DEZ DIMENSÕES E NÃO NECESSARIAMENTE RELACIONADAS COM O TEMPO E ESPAÇO, MAS COM A ESTRUTURA [MÁTRIA E ENERGIA] ENERGIAS, FENÔMENOS E DIMENSÕES.

AGORA SERÁ EXPRESSO AS DIMENSÕES CATEGORIAIS, ONDE SE TEM UMA RELAÇÃO DIRETA COM AS CATEGORIAS DE GRACELI [DE] :

TIPOS, NÍVEIS [INTENSIDADES] POTENCIAIS [CAPACIDADES DE PRODUÇÕES E TRANSFORMAS, INTERAÇÕES, E OUTROS, E O TEMPO DE AÇÃO.

AGORA SURGE MAIS DUAS :

AS ACELERAÇÕES [VARIÁVIES COM O TEMPO] E O DIRECIONAMENTO [PARA ONDE VAI [COMO NOS MOVIMENTOS ALEATÓRIOS, OU CAMINHOS QUÂNTICO.


ABAIXO SE TEM A FUNÇÃO DE CATEGORIAS, AGORA DIMENSÕES CATEGORIAIS DE GRACELI. INCLUINDO AS OUTRAS DUAS. [ACELERAÇÕES E DIRECIONAMENTOS, E COM FLUXOS VARIADOS].



T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



http://osmaioresgeniosfisicosastronomos.blogspot.com/

ESTADOSTRANSICIONAIS-DINÃMICA GRACELI EM SDCTIE GRACELI.


DENTRO DE UM SISTEMA DE ESTADOS EM INTERAÇÕES E TRANSFORMAÇÕES  DE ESTADOS QUÂNTICOS E ESTADOS FÍSICOS, E ESTADOS DE GRACELI ENVOLVENDO ESTADOS E DIMENSÕES [DEZ OU MAIS DIMENSÕES DE GRACELI], E ESTADOS FENOMÊNICOS, DE ENERGIAS, DE CATEGORIAS E DIMENSÕES. SE TEM UM SISTEMA FÍSICO DINÂMICO E ESTRUTURAS [DE PART´CILAS E SUAS TRANSIÇÕES]  CONFORME O SDCTIE GRACELI.


O SDCTIE GRACELI DEFENDE QUE A REALIDADE FÍSICA, QUÍMICA, BIOLÓGICA,  PSICOLÓGICA, SOCIAL, ONTOLÓGICA, E METAFÍSICA,

 E MESMO EPISTÊMICA [CONHECIMENTO E LINGUAGEM]  NÃO SE FUNDAMENTA EM OBSERVADOR , ONDE O OBSERVADOR PODE ALTERAR A REALIDADE EM SI. [PODE PARA ELE, MAS NÃO A REALIDADE EM SI]. [ISTO CAI POR TERRA O PRINCÍPIO DA INCERTEZA QUÂNTICO].

E QUE A REALIDADE SE FUNDAMENTA EM SISTEMA DE INTERAÇÕES ENVOLVENDO CATEGORIAS, DEZ OU MAIS DIMENSÕES DE GRACELI, INTERAÇÕES, TRANSFORMAÇÕES, E ESTADOS FENOMÊNICOS E TRANSICIONAIS DE GRACELI.

E NÃO  APENAS EM:  ESPAÇO E TEMPO, OU MATÉRIA E ENERGIA.


OU SEJA, A REALIDADE, OU AS REALIDADES SÃO MUITO MAIS DO QUE ISTO [ESPAÇO, TEMPO , ENERGIA E MATÉRIA]. E OU OBSERVADOR.

¨SENDO QUE AQUILO QUE NÃO SE VÊ NÃO É SINAL QUE NÃO EXISTE.
 OU AQUILO QUE SE VÊ É SINAL QUE EXISTE, OU NÃO EXISTE¨.

OS TERMONS E OS RADIONS  [DE GRACELI] ONDE SÃO FEIXES DE RADIAÇÕES EM PROPAGAÇÃO NO ESPAÇO E DENTRO DA MATÉRIA, 

E QUE TAMBÉM TEM PROPAGAÇÕES NO FORMATO DE ONDAS. 

OU SEJA, É UMA DUALIDADE ONDAS PARTÍCULAS.




TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




Em matemática, uma cadeia de Markov (cadeia de Markov em tempo discreto ou DTMC[1][2][3]) é um caso particular de processo estocástico com estados discretos (o parâmetro, em geral o tempo, pode ser discreto ou contínuo) com a propriedade de que a distribuição de probabilidade do próximo estado depende apenas do estado atual e não na sequência de eventos que precederam, uma propriedade chamada de Markoviana, chamada assim em homenagem ao matemático Andrei Andreyevich Markov. A definição dessa propriedade, também chamada de memória markoviana, é que os estados anteriores são irrelevantes para a predição dos estados seguintes, desde que o estado atual seja conhecido. Cadeias de Markov têm muitas aplicações como modelos estatísticos de processos do mundo real.


Introdução[editar | editar código-fonte]



A cadeia de Markov é um processo estocástico com a propriedade de Markov.[4] O termo "cadeia de Markov" refere-se à sequência de variáveis aleatórias, tais um processo move-se através de, com a propriedade de Markov definindo a dependência de série única entre períodos adjacentes (como em uma "cadeia"). Assim, pode ser usado para sistemas que seguem uma cadeia de eventos ligados, onde o que acontece em seguida depende apenas do estado atual do sistema descrevendo.
Na literatura, diferentes tipos de processo de Markov são designados como "cadeia de Markov". Normalmente, o termo é reservado para um processo com um conjunto discreto de vezes, isto é, Cadeia de Markov de Tempo Discreto (DTMC).[5] Por outro lado, alguns autores utilizam o termo "processo de Markov" para se referir a uma cadeia de Markov de tempo contínuo sem referência explícita.[6][7]
Enquanto o parâmetro de tempo é geralmente discreto, o espaço de estado de uma cadeia de Markov não tem quaisquer restrições geralmente aceitas: o termo pode referir-se a um processo em um espaço de estado arbitrário.[8] No entanto, muitas aplicações de Cadeias de Markov empregam conjuntos contáveis finitos ou infinitos (isto é, espaços de estado discretos), que têm uma análise estatística mais simples. Além da hora do índice e os parâmetros de espaço de estado, há muitas outras variações, extensões e generalizações (ver Variações). Para simplificar, a maior parte deste artigo concentra-se no tempo discreto, discreta caso de espaço de estado, salvo indicação em contrário.
As mudanças de estado do sistema são chamadas transições. As probabilidades associadas com várias mudanças de estado são chamados de probabilidades de transição. O processo é caracterizado por um espaço de estado, uma matriz de transição descrevendo as probabilidades de transições de particulares, e um estado inicial (ou a distribuição inicial) através do espaço de estado. Por convenção, assumimos todos os estados e transições possíveis foram incluídos na definição do processo, por isso há sempre um próximo estado, e o processo não termina.
Um processo aleatório de tempo discreto envolve um sistema que é em um determinado estado, em cada passo, com o estado a mudar de forma aleatória entre os passos. Os passos são muitas vezes considerados como momentos no tempo, mas podem igualmente bem se referirem à distância física ou a qualquer outra medida discreta. Formalmente, os passos são os números inteiros ou números naturais, e o processo aleatório é um mapeamento destes para estados. A propriedade de Markov afirma que a distribuição de probabilidade condicional para o sistema no próximo passo (e, de fato, em todas as etapas futuras) depende apenas do estado atual do sistema, e não adicionalmente sobre o estado do sistema em etapas anteriores.
Uma vez que o sistema altera aleatoriamente, é geralmente impossível prever com exatidão o estado de uma cadeia de Markov num dado momento no futuro. No entanto, as propriedades estatísticas do futuro do sistema podem ser previstas. Em muitas aplicações, são elas as importantes.
A famosa cadeia de Markov é o chamado "andar do bêbado", um passeio aleatório na linha número onde, a cada passo, a posição pode mudar por um ou -1 com igual probabilidade. A partir de qualquer posição há duas transições possível, para o seguinte ou anterior inteiro. As probabilidades de transição dependem somente da posição atual, não sobre o modo em que a posição foi alcançada. Por exemplo, as probabilidades de transição de 5-4 e 5-6 são ambos 0,5, e todos os outros a partir de probabilidades de transição 5 é 0. Estas probabilidades são independentes do fato de se o sistema foi anteriormente em 4 ou 6.
Outro exemplo são os hábitos alimentares de uma criatura que só come uvas, queijo ou alface, e cujos hábitos alimentares estão em conformidade com as seguintes regras:
  • Ele come apenas uma vez por dia.
  • Se ele comeu queijo hoje, amanhã ele vai comer alface ou uvas com igual probabilidade.
  • Se ele comeu uvas hoje, amanhã ele vai comer uvas com probabilidade de 1/10, queijo com probabilidade 4/10 e alface com probabilidade 5/10.
  • Se ele comeu alface hoje, amanhã ele vai comer uvas com probabilidade de 4/10 ou queijo com probabilidade 6/10. Ele não vai comer alface novamente amanhã.
Os hábitos alimentares desta criatura podem ser modelados com uma cadeia de Markov desde que a escolha em seu amanhã depende unicamente do que comer em seu hoje, e não do que comeu ontem ou em qualquer outro momento do passado. Uma propriedade estatística é de que a percentagem esperada pode ser calculada ao longo de um longo período de tempo, dos dias em que a criatura vai comer uvas.
Uma série de eventos independentes (por exemplo, uma série de arremessos de moedas) satisfaz a definição formal de uma cadeia de Markov. No entanto, a teoria é normalmente aplicada apenas quando a distribuição de probabilidade do próximo passo depende não-trivialmente sobre o estado atual. Existem muitos outros exemplos de cadeias de Markov.

Definição formal[editar | editar código-fonte]

Cadeia de Markov simples.
Uma cadeia de Markov é uma sequência X1X2X3, ... de variáveis aleatórias. O escopo destas variáveis, isto é, o conjunto de valores que elas podem assumir, é chamado de espaço de estados, onde Xn denota o estado do processo no tempo n. Se a distribuição de probabilidade condicional de Xn+1 nos estados passados é uma função apenas de Xn, então:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

onde x é algum estado do processo. A identidade acima define a propriedade de Markov.
Cadeias de Markov são frequentemente descritas por uma sequência de grafos dirigidos, onde as arestas do gráfico n são rotulados por as probabilidades de ir de um estado no tempo n para outros estados no tempo n+1. A mesma informação é representada pela matriz de transição de momento n para o tempo n+1. No entanto, as cadeias Markov são assumidas frequentemente como sendo tempo-homogêneas (ver variações abaixo), nesse caso o gráfico e a matriz são independentes de n e, portanto, não são apresentados como sequências.
Estas descrições realçam a estrutura da cadeia de Markov que é independente da distribuição inicial . Quando o tempo é homogêneo, a cadeia pode ser interpretada como uma máquina de estado atribuindo uma probabilidade de pular de cada vértice ou estado para outro adjacente. A probabilidade  de Estado da máquina pode ser analisado como o comportamento estatístico da máquina com um elemento  do espaço de estados como entrada, ou como o comportamento da máquina com a distribuição inicial  de estados como entrada, onde  é o suporte de Iverson.
O fato de que algumas sequências de estados pode ter zero probabilidade de ocorrência corresponde a um gráfico com vários componentes ligados, onde se omitem arestas que levaria a uma probabilidade de transição zero. Por exemplo, se a tem uma probabilidade diferente de zero de ir para b, mas a e x estão em diferentes componentes ligados do gráfico, então,  é definida, enquanto  não é.
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Uma maneira simples de visualizar um tipo específico de cadeia de Markov é através de uma máquina de estados finitos. Se você está no estado y no tempo n, então a probabilidade de que você se mova para o estado x no tempo n + 1 não depende de n, e somente depende do estado atual y em que você está. Assim em qualquer tempo n, uma cadeia de Markov finita pode ser caracterizada por uma matriz de probabilidades cujo elemento (xy) é dado por  e é independente do tempo n. Estes tipos de cadeia de Markov finitas e discretas podem também ser descritas por meio de um grafo dirigido (orientado), onde cada aresta é rotulada com as probabilidades de transição de um estado a outro sendo estes estados representados como os nós conectados pelas arestas.

Caracterização de um processo de Markov[editar | editar código-fonte]

Ver artigo principal: Processo estocástico
Um processo de Markov é um processo estocástico em que a probabilidade de o sistema estar no estado i no período (n+1) depende somente do estado em que o sistema está no período n. Ou seja, para os processos de Markov, só interessa o estado imediato.[9][10] Os principais elementos de um processo de Markov são dois[9] :
  • probabilidade xi(n) de ocorrer o estado i no n-ésimo período de tempo, ou, alternativamente, a fração da população em questão que está no estado i no n-ésimo período de tempo
  • as probabilidades de transição mij, que representam as probabilidades de o processo estar no estado i no tempo (n+1) dado que está no estado j no tempo n. Estas probabilidades de transição são normalmente agrupadas numa matriz, que denominamos matriz de transiçãomatriz estocástica ou ainda matriz de Markov.

Variações[editar | editar código-fonte]

  • Processos de Markov de tempo contínuo têm um índice contínuo.
  • Cadeias de Markov de tempo homogêneo (ou cadeias de Markov estacionárias) são processos em que
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


para todo n. A probabilidade da transição de n é independente.
  • Uma cadeia de Markov de ordem m (ou uma cadeia de Markov com memória m), onde m é finito, é um processo que satisfaça
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Em outras palavras, o estado futuro depende dos passados m estados. É possível construir uma cadeia (Yn) de (Xn), que tem a propriedade de Markov "clássico", tendo como espaço de estado do m-tuplas ordenadas de valores X, ou seja, Yn = (XnXn−1, ..., Xnm+1).

Cadeias de Markov em espaços de estados discretos[editar | editar código-fonte]

Ver artigo principal: Matriz de transição
Um espaço de estados é representável por uma matriz. Chamada de matriz de transição, com o (ij)-ésimo elemento igual a
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Para um espaço de estados discretos, as integrações na probabilidade de transição de k passos são somatórios, e podem ser calculados como a k-ésima potência da matriz de transição. Isto é, se P é a matriz de transição para um passo, então Pk é a matriz de transição para a transição de k passos.
A distribuição estacionária  é o vetor que satisfaz a equação:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde  é o vetor transposto de . Em outras palavras, a distribuição estacionária  é o autovetor (vetor próprio) esquerdo da matriz de transição, associado com o autovalor (valor próprio) 1.
Como consequência, nem a existência nem a unicidade de distribuição estacionária é garantida para uma matriz de transição qualquer P. Contudo, se P é irredutível e aperiódica, então existe uma distribuição estacionária . Além disso, Pk converge para uma matriz na qual cada linha é a (transposta da) distribuição estacionária , que é dada por:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde  é o vetor coluna com todas as entradas iguais a 1. Isto é estabelecido pelo Teorema de Perron-Frobenius.
Exemplo de cadeia de Markov.
Isto significa que se nós simularmos ou observamos uma caminhada aleatória com matriz de transição P, então a probabilidade de longo prazo de que o indivíduo que faz a caminhada esteja em um certo estado é independente do estado em que essa caminhada começou, e é definida pela distribuição estacionária. A caminhada aleatória "ignora" o passado. Em suma, cadeias de Markov são o passo seguinte depois dos processos sem memória (isto é, uma sequência de variáveis aleatórias independentes distribuídas uniformemente).
Uma matriz de transição que é positiva (isto é, todo o elemento da matriz é positivo) é irredutível e aperiódica. Uma matriz é uma matriz estocástica se e somente se é uma matriz de probabilidades de transição de uma cadeia de Markov.
Um caso especial de probabilidade de transição independente do passado é conhecido como o esquema de Bernoulli. Um esquema de Bernoulli com somente dois estados possíveis é conhecido como um processo de Bernoulli.

Exemplo[editar | editar código-fonte]

Finance Markov chain example state space - PT.svg
Um diagrama de estado para um exemplo simples é mostrado na figura à direita, usando para imaginar as transições de estado de um grafo dirigido. Os estados representam se um mercado de ações hipotético está exibindo um mercado em alta, mercado em baixa, ou tendência do mercado estagnado durante uma determinada semana. De acordo com a figura, uma semana de alta é seguido por uma outra semana de alta 90% do tempo, de uma semana de baixa 7,5% do tempo, e uma semana estagnada outro 2,5% do tempo. Etiquetas de espaço de estado {1 = alta, 2 = baixa, 3 = estagnado} a matriz de transição para este exemplo é
A distribuição por estados pode ser escrito como um vetor de linha estocástico x com x(n + 1) = x(n)P. Assim, se no tempo n o sistema está no estado x(n), e em seguida, três períodos de tempo mais tarde, no tempo n + 3 a distribuição é
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Em particular, se num momento n o sistema está no estado 2 (baixa), então no tempo n + 3, a distribuição é
Utilizando a matriz de transição, é possível calcular, por exemplo, a fracção de longo prazo de semanas durante o qual o mercado é estagnado, ou o número médio de semanas que será necessário para passar de uma estagnada a um mercado de touro. Usando as probabilidades de transição, as probabilidades de estado estacionário indicam que 62,5% das semanas estará em um mercado de touro, 31,25% de semanas estará em um mercado de urso e 6,25% de semanas será estagnada, uma vez que:
Um desenvolvimento aprofundado e muitos exemplos podem ser encontradas na monografia sobre-linha Meyn & Tweedie 2005.[11]
Imagine um país onde só seja possível estar em três classes sociais, denominadas estados: A, B ou C. Em cada período de tempo, a probabilidade de uma pessoa mudar de um estado para outro é constante no tempo e só depende dos estados. Este processo é chamado de cadeia de Markov.[12]
Uma máquina de estado finito pode ser utilizada como uma representação de uma cadeia de Markov. Assumindo uma sequência de sinais de entrada independentes e identicamente distribuídos (por exemplo, símbolos de um alfabeto binário escolhido por lançamentos de moeda), se a máquina está no estado y no tempo n, então a probabilidade de que ele se move para declarar x no tempo n + 1 depende apenas do estado atual.

Evolução transitória[editar | editar código-fonte]

A probabilidade de ir do estado i para o estado j em intervalos de tempo n é
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


e a transição de um único passo é
Para uma cadeia de Markov de tempo homogêneo:
e
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


As probabilidades de transição de n-etapa satisfazem a equação Chapman-Kolmogorov, que para qualquer k tal que 0 < k < n,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde S é o espaço de estados da cadeia de Markov.
A distribuição marginal Pr(Xn = x) é a distribuição mais estados no tempo n. A distribuição inicial é Pr(X0 = x). A evolução do processo através de um passo de tempo é descrita pela
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Nota: O expoente (n) é um índice e não um expoente.

Propriedades[editar | editar código-fonte]

Redutibilidade[editar | editar código-fonte]

Um estado j é dito ser acessível a partir de um estado i (escrito i → j) se um sistema começou no estado i tem uma probabilidade diferente de zero de transição para o estado j em algum ponto. Formalmente, o estado j é acessível a partir do estado i, se existe um inteiro nij ≥ 0 tal que
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Este inteiro é permitido para ser diferente para cada par de estados, portanto, os subscritos em nij. Permitindo que n seja zero significa que cada estado é definida para ser acessível a partir de si mesmo.
Um estado i é dito para se comunicar com o estado j (escrito i ↔ j) se ambos i → j e j → i. Um conjunto de estados C é uma classe de comunicação se cada par de estados em C comunica com o outro. Uma classe comunicação está fechado se a probabilidade de deixar a classe é zero, ou seja, que se i estiver em C, mas j não, então j não é acessível a partir de i. Pode-se mostrar que a comunicação neste sentido é uma relação de equivalência e, assim, que as classes comunicantes são as classes de equivalência dessa relação.
O conjunto de classes comunicantes forma, um gráfico acíclico dirigido por herdar as setas do espaço estado original. Uma classe comunicação está fechado, se e somente se ele não tem setas de saída neste gráfico.
Um estado i é dito ser essencial ou final se para todo j tal que i → j também é verdade que j → i. Um estado i é não-essencial se não é essencial.[13] Um estado é definitiva se e somente se sua classe comunicação está fechado.
A cadeia de Markov é dito ser irredutível se o seu espaço de estado é uma classe única comunicação; em outras palavras, se é possível chegar a qualquer estado de qualquer estado.

Periodicidade[editar | editar código-fonte]

Um estado i tem período k se houver retorno ao estado i deve ocorrer em múltiplos de passos de tempo k. Formalmente, o período de um estado é definido como
(Onde "mdc" é o maior divisor comum), desde que este conjunto não é vazio. Caso contrário, o período não está definido. Note-se que mesmo que um estado tem período k, pode não ser possível atingir o estado em k passos. Por exemplo, suponha que é possível voltar ao estado em {6, 8, 10, 12, ...} intervalos de tempo; k seria 2, embora 2 não aparece nesta lista.
Se k = 1, então o estado é dito ser aperiódico: retorno ao estado i pode ocorrer em períodos irregulares. Pode ser demonstrado que um estado i é aperiódico se e somente se existe n tal que para todo n' ≥ n,
Caso contrário (k > 1), o estado é dito ser periódico com período k. A cadeia de Markov é aperiódica se cada estado é aperiódico. Uma cadeia de Markov irredutível só precisa de um estado aperiódico para implicar que todos os estados são aperiódicos.
Cada estado de um grafo bipartido tem um período regular.

Transitoriedade[editar | editar código-fonte]

Um estado i é dito transitório, se, uma vez que começamos no estado i, existe uma probabilidade não nula de que nunca voltará a i. Formalmente, seja a variável aleatória Ti o primeiro tempo de retorno ao estado i (o "hitting time"):
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


O número
é a probabilidade de voltar para o estado i pela primeira vez após n passos. Portanto, o estado i é transitório se
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


O estado i é recorrente (ou persistente) se não é transitório. Estados recorrentes tem garantidos (com probabilidade 1) um hitting time finito. Recorrência e transitoriedade são propriedades de classe, isto é, elas são válidas ou não de forma igual para todos os membros de uma classe comunicante.

Tempo médio de recorrência[editar | editar código-fonte]

Mesmo que o hitting time seja finito com probabilidade 1, ele não precisa de ter uma expectativa finita. O tempo de recorrência média no estado i é o tempo de retorno esperado Mi:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Estado i é recorrente positivo (ou persistente não-nulo) se Mi é finito; caso contrário, o estado i é recorrente nulo (ou persistente nulo).

Número esperado de visitas[editar | editar código-fonte]

Pode ser mostrado que um estado i é recorrente se e somente se o número esperado de visitas a este estado é infinito, isto é,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Absorvendo estados[editar | editar código-fonte]

Um estado i é chamado de absorção, se é impossível sair deste estado. Portanto, o estado i está absorvendo se e somente se
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Se cada estado pode chegar a um estado de absorção, então a cadeia de Markov é uma cadeia de Markov absorvente.

Ergodicidade[editar | editar código-fonte]

Um estado i é dito ser ergódico se ele tem uma recorrência aperiódica e positiva. Em outras palavras, um estado i é ergódico se for recorrente, tem um período de 1 e tem tempo de recorrência média finita. Se todos os estados em uma cadeia de Markov irredutível são ergódicos, então a cadeia é ergódica.
É possível mostrar que uma cadeia de Marvok irredutível de estado finito é ergódica se ela tem um estado aperiódico. A cadeia de Markov tem a propriedade ergódica se há um número finito N tal que qualquer estado pode ser alcançado a partir de qualquer outro estado em exatamente N passos. No caso de uma matriz de transição totalmente ligada, em que todas as transições têm uma probabilidade não nula, esta condição é preenchida com N = 1. A cadeia de Markov com mais de um estado e apenas uma transição de sair por estado não pode ser ergódica.

Análise de estado estacionário e distribuições limitantes[editar | editar código-fonte]

Se a cadeia de Markov é uma cadeia de Markov de tempo homogénea, de modo que o processo é descrito por uma única matriz que independe do tempo , então o vetor  é chamado de distribuição estacionária (ou medida invariante) se  satisfaz
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Uma cadeia irredutível tem uma distribuição estacionária se e somente se todos os seus estados são recorrentes positivos.[14] Nesse caso, π é único e está relacionada com o tempo de retorno esperado:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde  é a constante de normalização. Além disso, se a cadeia positiva recorrente é irredutível e aperiódica, diz-se que tem uma distribuição limitante; para qualquer i e j,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Note-se que não existe qualquer hipótese da distribuição inicial; a cadeia converge para a distribuição estacionária independentemente de onde ele começa. Tal  é chamado de distribuição em equilíbrio da cadeia.
Se uma cadeia tem mais de uma classe comunicante fechada, suas distribuições estacionárias não serão únicas (considere qualquer classe comunicante fechada  na cadeia, cada uma terá a sua própria distribuição estacionária única . Estendendo essas distribuições à cadeia global, definindo todos os valores a zero fora da classe comunicante, resulta que o conjunto de medidas invariantes da cadeia original é o conjunto de todas as combinações convexas da {). No entanto, se um estado j é aperiódico, então
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


e para qualquer outro estado i, sendo fij a probabilidade de que a cadeia visite o estado j, se ele começa no i,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Se um estado i é periódico com período k > 1, então o limite
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


não existe, embora o limite
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


exista para cada inteiro r.

Análise de estado estacionário e na cadeia de Markov de tempo não homogêneo[editar | editar código-fonte]

A cadeia de Markov não precisa ser necessariamente o tempo homogêneo para ter uma distribuição de equilíbrio. Se há uma distribuição de probabilidade sobre estados  tal que
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


para cada estado j e cada tempo n, então  é uma distribuição em equilíbrio da cadeia de Markov. Tal situação pode ocorrer em métodos de cadeia de Markov de Monte Carlo (MCMC) em situações em que um número de diferentes matrizes de transição são usadas, porque cada uma é eficaz para um tipo particular de mistura, mas cada matriz respeita uma distribuição de equilíbrio partilhada.

Espaço de estado finito[editar | editar código-fonte]

Se o espaço de estados é finito, a distribuição de probabilidade de transição pode ser representada por uma matriz, chamada de matriz de transição, com o (ij)-ésimo elemento de P igual
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Uma vez que cada fileira de P soma um e todos os elementos são não-negativos, P é uma matriz estocástica direita.

Relação distribuição estacionária de vetores próprios e simplices[editar | editar código-fonte]

Um π distribuição estacionária é um vetor (linha), cujos elementos são não-negativos e somam 1, mantém-se inalterado pela operação da matriz de transição P sobre ele e por isso é definida pela
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Ao comparar essa definição com a de um vetor próprio vemos que os dois conceitos estão relacionados e que
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


é um múltiplo normalizado () de um vetor próprio esquerdo e' da matriz de transição PT com um valor próprio de 1. Se houver mais do que uma unidade de vetor próprio em seguida, a soma ponderada dos correspondentes estados estacionários é também um estado estacionário. Mas para uma cadeia de Markov é geralmente mais interessados em um estado estacionário que é o limite das distribuições de sequência para alguma distribuição inicial.
Os valores de distribuição estacionária  estão associadas com o espaço de estado de P e seus vetores próprios têm as suas proporções relativas preservadas. Uma vez que os componentes do π são positivos e a restrição de que a sua soma é a unidade pode ser reescrita como  vemos que o produto do ponto de π com um vetor cujos componentes são todos 1 é unitário e que π encontra-se em um simplex.

Cadeia de Markov de tempo homogêneo com um espaço de estado finito[editar | editar código-fonte]

Se a cadeia de Markov é vez homogênea, em seguida, a matriz de transição P é o mesmo depois de cada passo, de modo que a probabilidade de transição do passo k pode ser calculado como a potência k da matriz de transição Pk.
Se a cadeia de Markov é irredutível e aperiódica, então há uma distribuição estacionária única π. Além disso, neste caso Pk converge para uma matriz de posto um em que cada linha é o π distribuição estacionária, que é,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde 1 é o vetor coluna com todas as entradas iguais a 1. Isto é afirmado pelo teorema de Perron-Frobenius. Se, por qualquer meio,  é encontrado, então a distribuição estacionária da cadeia de Markov em questão pode ser facilmente determinada para qualquer distribuição, tal como será explicado abaixo.
Para algumas matrizes estocásticas P, o limite  não existe enquanto a distribuição é estacionária, como mostra este exemplo:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Observe que este exemplo ilustra uma cadeia de Markov periódica.
Uma vez que existem um número de diferentes casos especiais a considerar, o processo de encontrar este limite se existir pode ser uma tarefa longa. No entanto, existem muitas técnicas que podem ajudar a encontrar esse limite. Seja P uma matriz n×n, e definindo 
É verdade que sempre
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Subtraindo 'Q de ambos os lados e fatorando, tem os resultados
Onde In é a matriz identidade de tamanho n e 0n,n é a matriz zero de tamanho n×n. Multiplicando juntos matrizes estocásticos sempre produz uma outra matriz estocástica, então Q deve ser uma matriz estocástica (ver definição acima). Por vezes é suficiente para utilizar a equação da matriz acima e o facto de que Q é uma matriz estocástica de resolver por Q, incluindo o facto de que a soma de cada uma das linhas em P é 1, existem n+1 equações para determinar n incógnitas, por isso é computacionalmente mais fácil se, por um lado uma seleciona uma linha em Q e substituir cada um dos seus elementos por uma, e por outro um substituir o elemento correspondente (a uma na mesma coluna) no vetor de 0, e ao lado esquerdo - multi este último vetor pelo inverso da antiga matriz transformada para encontrar Q.
Aqui é um método para fazê-lo: em primeiro lugar, definir a função f(A) para retornar a matriz A com a sua coluna mais à direita substituído com toda a 1s. Se [f(P − In)]−1 existe, em seguida,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


A equação matriz original é equivalente a um sistema de n × n equações lineares em n × n variáveis. E existem n equações lineares mais a partir do facto de que Q é uma matriz estocástica direito cujo cada linha somas para 1. Por isso, necessita de qualquer N × n equações lineares independentes das equações (N × N + N) para resolver os n × n variáveis. Neste exemplo, os n equações de "Q multiplicado pela coluna mais à direita de (P-Na)" foram substituídos por aqueles N estocásticos.
Uma coisa a notar é que, se P tem um elemento Pi,i na sua diagonal principal, que é igual a 1 e a linha om ou coluna i-ésima é preenchida com zeros, então essa linha ou coluna permanecerá inalterada em todos os poderes subsequentes Pk . Assim, a i-ésima linha ou coluna de Q terá os 1 e os 0 de nas mesmas posições como em P.

Velocidade de convergência para a distribuição estacionária[editar | editar código-fonte]

Como afirmado anteriormente, a partir da equação , (se existir) o estacionária (ou steady state) π distribuição é um autovetor esquerdo da linha da matriz estocástica P. Em seguida, assumindo que P é diagonalizável ou equivalentemente que P tem n autovetores linearmente independentes, a velocidade de convergência é elaborado da seguinte forma. (Para não diagonalizável, ou seja, matrizes defeituosos, pode-se começar com a forma normal Jordan de P e prosseguir com o conjunto um pouco mais envolvidos de argumentos de uma maneira similar.[15])
Seja U a matriz de autovetores (cada um normalizado para ter uma norma L2 igual a 1), onde cada coluna é um vetor próprio esquerdo do P e deixe Σ a matriz diagonal de valores próprios à esquerda de P, ou seja, Σ = diag(λ1,λ2,λ3,...,λn). Então, por eigendecomposição
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Deixe os valores próprios ser enumerados tal que 1 = |λ1| > |λ2| ≥ |λ3| ≥ ... ≥ |λn|. Uma vez que P é uma matriz estocástica de linha, o seu maior valor próprio esquerda é 1. Se houver uma distribuição estacionário original, em seguida, o valor próprio maior e o vetor próprio correspondente é também único (porque não existe nenhum outro π que resolve a equação distribuição estacionária acima). Seja ui a coluna i da matriz U, ou seja, ui é o autovetor esquerdo de P correspondente a λi. Também sendo x ser um vetor linha comprimento n que representa uma distribuição de probabilidade válida; já que os autovetores ui se distribuem por Rn, podemos escrever
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

por algum conjunto de ai∈ℝ. Se começa-se a multiplicação de P com x da esquerda e continuar esta operação com os resultados, no final, obtém-se o π distribuição estacionária. Em outras palavras, π = ui ← xPPP...P = xPk como k vai para infinito. Que significa
desde UU−1 = I, a matriz de identidade e de energia de uma matriz diagonal também é uma matriz diagonal em que cada entrada é feita para que o poder.
uma vez que os vetores próprios são ortonormais. Então[16]
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Desde π = u1π(k) abordagens para π como k vai para infinito com uma velocidade na ordem de λ2/λ1 exponencialmente. Isto acontece porque |λ2| ≥ |λ3| ≥ ... ≥ |λn|, portanto, λ2/λ1 é o termo dominante. Um ruído aleatório na distribuição de estado π também pode acelerar essa convergência com a distribuição estacionária.[17]

Cadeia de Markov reversíveis[editar | editar código-fonte]

Uma cadeia de Markov é dita ser reversível se existe uma distribuição de probabilidade π sobre os seus estados tais que
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


para todos os tempos n e todos os estados i e j. Esta condição é conhecida como condição de balanço detalhado (alguns livros chamam a equação de balanço local).
Considerando-se um tempo arbitrário n fixo e usando a abreviação
a equação do balanço detalhado pode ser escrita de forma mais compacta como
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


O tempo de um só passo a partir de n a n+1 pode ser pensado como tendo cada pessoa i que inicialmente πi dólares e pagar cada pessoa j uma fração pij dela. A condição de balanço detalhado afirma que a cada pagamento, a outra pessoa paga exatamente a mesma quantidade de dinheiro de volta.[18] É evidente que a quantidade total de dinheiro π que cada pessoa tem permanece o mesmo após o passo de tempo, uma vez que cada dólar gasto é equilibrado por um dólar correspondente recebida. Isto pode ser demonstrado mais formalmente pela igualdade
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


que afirma essencialmente que a quantidade total de dinheiro pessoa j recebe (incluindo de si mesmo) durante o passo de tempo é igual à quantidade de dinheiro que ele paga a outros, o que equivale a todo o dinheiro que tinha inicialmente porque foi assumido que todo o dinheiro é gasto (isto é pji soma 1 sobre i). A suposição é uma questão técnica, porque o dinheiro não é realmente usada é simplesmente pensado como sendo pagos de pessoa j para si mesmo (isto é pjj não é necessariamente zero).
Como n foi arbitrário, este raciocínio é válido para qualquer n, e, portanto, para cadeias de Markov reversíveis π é sempre uma distribuição no estado estacionário de Pr(Xn+1 = j | Xn = i) para cada n.
Se a cadeia de Markov começa na distribuição em estado estacionário, isto é, se Pr(X0 = i) = πi, então Pr(Xn = i) = πi para todo o n e a equação de equilíbrio detalhada pode ser escrito como
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Os lados esquerdo e direito desta última equação são idênticas, exceto para uma reversão dos índices de tempo n e n + 1. critério de Kolmogorov dá uma condição necessária e suficiente para uma cadeia de Markov para ser reversível directamente a partir das probabilidades de transição de matriz. O critério exige que os produtos de probabilidades em torno de cada circuito fechado são os mesmos em ambas as direcções em torno do circuito.
Cadeias de Markov reversíveis são comuns na cadeia de Markov Monte Carlo (MCMC) se aproxima, porque a equação do balanço detalhado para a distribuição π desejada implica necessariamente que a cadeia de Markov foi construído de modo que π é uma distribuição em estado estacionário. Mesmo com correntes de Markov de tempo não homogénea, em que múltiplas matrizes de transição são usados, se cada matriz de transição exibe equilíbrio detalhada com a distribuição π desejada, isto implica necessariamente que π é uma distribuição em estado estacionário da cadeia de Markov.






Movimento browniano

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegaçãoSaltar para a pesquisa
Movimento browniano de uma partícula num fluido. A partícula é apenas um ponto, do tamanho de todos os presentes na imagem, a área amarela serve para que se possa observar as setas - vetores aceleração - que são recebidos pela partícula em questão quando ela se choca com as outras partículas do fluido.
Movimento Browniano ou pedesis (em gregoπήδησις /pɛ̌ːdɛːsis/ "pulando") é o movimento aleatório das partículas suspensas em um fluido (líquido ou gás), resultante da sua colisão com átomos rápidos ou moléculas no gás ou líquido. O movimento Browniano é um dos mais simples processos da estocástica (ou probabilística) de tempo contínuo, e é um limite de ambos os processos mais simples e mais complicados estocásticos (veja passeio aleatório e teorema de Donsker). Esta universalidade está intimamente relacionada com a universalidade da distribuição normal. Em ambos os casos, é muitas vezes conveniência matemática, em vez da precisão dos modelos, que motiva a sua utilização.
O termo "movimento Browniano", nomeado em homenagem ao botânico Robert Brown, também pode se referir ao modelo matemático usado para descrever tais movimentos aleatórios, que muitas vezes é chamado de teoria da partícula.[1] Este modelo tem inúmeras aplicações do mundo real. Por exemplo, flutuações do mercado de ações são frequentemente citados, embora Benoît Mandelbrot rejeitou sua aplicabilidade aos movimentos de preços de ações, em parte, porque estes são descontínuos.[2]


Conceito[editar | editar código-fonte]

O movimento browniano é o movimento aleatório de partículas num fluido (líquido ou gás) como consequência dos choques entre todas as moléculas ou átomos presentes no fluido. O termo movimento browniano pode ser usado para se referir a uma grande diversidade de movimentos com partículas, com moléculas, e com ambos presentes em estados desde micro até macroscópicos em situações de organização caóticas, semi-caóticas, ou de proporções matemáticas, principalmente em casos de modelagem, todos estes na área denominada Física de partículas.[1]
Esse fenômeno físico que é intrínseco à matéria e aos choques que ocorrem nos fluidos, também pode ser observado com macromoléculas, tendo por exemplo o momento que a luz incide em locais relativamente secos, permitindo que se veja macropartículas "flutuando" em suspensão no ar fazendo movimentos aleatórios. Vulgarmente confunde-se com poeira, entretanto deve-se notar que o ar (o fluido em questão) que pratica o movimento browniano e não as partículas (ou macromoléculas, neste caso poeira) que estão naquele.[1]
Há um padrão pouco explícito em alguns casos deste movimento aleatório que o classifica como um movimento fractal, pois descreve um padrão dinâmico bem definido. Quem primeiro percebeu isso foi Benoît Mandelbrotmatemático francês.
Esse movimento está diretamente ligado com muitas reações em nível celular, como a difusão, a formação de proteínas, a síntese de ATP e o transporte intracelular de moléculas.
Hoje em dia, o movimento browniano serve de modelo na descrição de flutuações que ocorrem nos mais diversos e inesperados tipos de sistemas. Por exemplo, praticamente a mesma descrição e o mesmo tratamento matemático de Einstein podem ser adaptados para descrever flutuações de preços de mercadorias, a condutividade elétrica em metais e a ocorrência de cheias nos rios.[3]
Físicos atualmente estudam tal movimento em relação à Teoria do Caos.

Breve História[editar | editar código-fonte]




O poema didático latino De rerum natura (Sobre a natureza das coisas), escrito por Tito Lucrécio Caro cita:
Os átomos movem-se num infinito vazio.
O universo é composto de átomos e vazio, nada mais.
Devido a sermos compostos de uma sopa de átomos em constante movimento[...].
As formas de vida neste mundo e nos outros estão em constante movimento, incrementando a potência de umas formas e diminuindo a de outras.
Os sentimentos percebem as colisões macroscópicas e interacções dos corpos[...]Albert Einstein.
Demonstrando algum conhecimento das sociedades antigas sobre como choques de partículas geram os vários fenômenos que são citados. É de se observar que na época em questão não havia aceitação e nem entendimento unânime sobre a existência de átomos e outros componentes da matéria. A disputa atômica começou com Demócrito e Anaxagoras. Os filósofos se opunham às teorias atômicas, distinguidos pela questão da gota d´água, por exemplo, que deve se dividir repetidamente sem limite, com cada subdivisão preservando as propriedades da original. A escola atômica de Demócrito defendia que as subdivisões não podiam continuar indefinidamente. A doutrina da homogeneidade seguida por Anaxagoras defende que a divisão da gota pode continuar sem término, porque o tamanho do corpo não reflete a natureza da substância.

Descoberta do Movimento Browniano[editar | editar código-fonte]

Em 1827, ao olhar através de um microscópio partículas encontradas em grãos de pólen na água,o biólogo Robert Brown observou que as partículas se moviam através da água, mas não foi capaz de determinar os mecanismos que causaram este movimento. Assim, foi o primeiro a observar cientificamente o movimento que achou se tratar de uma nova forma de vida, pois ainda não se tinha completa ciência da existência de moléculas, e as partículas pareciam descrever movimentos por vontade própria.
Jan Ingenhousz também fez algumas observações do movimento irregular de poeira de carbono em álcool em 1765. Porém, a primeira pessoa a descrever a matemática por trás do movimento Browniano foi Thorvald N. Thiele em 1880 em um artigo no método dos menores quadrados. Isto foi seguido independentemente por Louis Bachelier em 1900 em sua tese de PhD "A Teoria da Especulação".
Átomos e moléculas , posteriormente foram teorizados como os constituintes da matéria e, muitas décadas depois, Albert Einstein publicou um artigo em 1905 que explicava em detalhes precisos como o movimento que Brown tinha observado era o resultado do pólen sendo movido por moléculas de água individuais. Esta explicação deste fenômeno de transporte serviu como a confirmação definitiva de que átomos e moléculas realmente existem, e foi ainda verificada experimentalmente por Jean Baptiste Perrin, em 1908. Perrin foi agraciado com o Prêmio Nobel de Física em 1926 "por seu trabalho sobre a estrutura descontínua da matéria" (Einstein tinha recebido o prêmio cinco anos antes "por seus serviços à física teórica", com citação específica de uma pesquisa diferente). Sendo então que a direção da força de bombardeamento atômico está constantemente mudando, e em diferentes momentos da partícula é atingido mais de um lado do que o outro, levando à natureza aparentemente aleatória do movimento.

Ficheiro:2D Random Walk 400x400.ogv
Exemplo animado de um movimento browniano segundo a modelagem matemática do Processo de Wiener confirmado pelo Teorema de Donsker.

Resultados físicos posteriores[editar | editar código-fonte]

Theodor Svedberg fez importantes demonstrações do movimento Browniano em colóides e Felix Ehrenhaft, em partículas de prata no ar.
Jean Perrin realizou experimentos para testar os novos modelos matemáticos e seus resultados publicados finalmente colocaram um fim na disputa de dois mil anos sobre a existência dos átomos e moléculas.E, por esses trabalhos, ele foi agraciado com o prêmio Nobel de Física de 1926.
Alguns anos depois do trabalho de Einstein, o matemático Norbert Wiener provou que a trajetória browniana tem comprimento infinito entre dois pontos quaisquer. O caminho traçado pela partícula é tão demorado que, se houvesse um tempo infinitamente longo, ela percorreria todo o plano, sem deixar de passar por nenhum ponto. Tecnicamente se diz que, contrariando as aparências, o caminho percorrido pela partícula browniana não é uma linha (com dimensão 1), mas é uma superfície (com dimensão 2)! E tem mais: Não pense que a trajetória da partícula browniana parece ser irregular porque o microscópio não tem um aumento suficiente para mostrar os detalhes da curva. Nada disso. Com um microscópio mais potente veríamos mais detalhes, realmente, mas a curva seria tão angulosa e irregular quanto antes[4].

Outras Pesquisas[editar | editar código-fonte]

Outro francês, Louis Bachelier, em sua tese de doutoramento apresentada em 1900, cinco anos antes do artigo de Einstein, desenvolveu praticamente toda a teoria do movimento aleatório, obtendo expressões semelhantes às que seriam depois obtidas por Einstein. No entanto, Bachelier não descrevia um sistema físico, como partículas suspensas em água, mas as flutuações das ações de uma bolsa de valores. Por essa razão, seus resultados passaram inteiramente despercebidos pelo,s físicos da época. Hoje, sabe-se que o tratamento teórico dessas flutuações serve para explicar inúmeros fenômenos que ocorrem em áreas completamente distintas, como a física, a biologia, a economia e as ciências políticas. A observação aparentemente inocente de Robert Brown revelou-se muito mais importante do que parecia do que quando foi relatada pela primeira vez. [5]

Movimento Browniano na Física[editar | editar código-fonte]

A primeira teoria do Movimento Browniano na Física foi publicada por Einstein em sua tese de doutoramento no ano de 1905, publicada em "Annalen der Physik". Inicialmente, Einstein analisou as equações de Navier-Stokes para o escoamento de um fluido incompressível, obtendo:[6]
                                                         
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Onde,
 = Viscosidade efetiva na presença de soluto;
 = Viscosidade do solvente puro;
 = Parte do volume total que é ocupada pelo soluto.
Assim, com base em grandezas conhecidas, como a massa molar e a densidade, tem - se que:
                                                        
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Desse modo, as únicas incógnitas são o raio da partícula () e o Número de Avogrado (). O cientista buscou ainda outro modo de relacionar  e , obtendo um resultado matemático em que relaciona a difusão (D) com a temperatura e a viscosidade do fluido, de forma:[7]
                                                          
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Onde,
D = Coeficiente de Difusão
T = Temperatura Termodinâmica
 = Raio das partículas
 = Viscosidade do solvente puro
 = Número de Avogadro
Por meio do Movimento Browniano, Einstein possibilitou a observação de flutuações de partículas que anteriormente possuíam desvio quadrático médio muito pequeno. A base de sua teoria é tida como a semelhança do comportamento de soluções e do comportamento de suspensões diluídas, onde existe uma relação do coeficiente de difusão com a viscosidade, somado à uma dedução probabilística da equação de difusão.[7] Diante desses cálculos, foi elaborado para o Movimento Browniano o deslocamento quadrático médio na direção "x" e o tempo de observação "t", tal que:[8]
                                                               
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


No caso tridimensional, devido a isotropia, temos que:
                                                      
                         X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


                                      
Alguns anos após as descobertas de Einstein, em 1908, Paul Langevin, assim como outros cientistas, buscou a generalização das fórmulas já criadas. Assim, Langevin definiu que o Movimento Browniano de uma partícula que esteja fora de um campo de força conservativo pode ser escrito como uma equação diferencial, sendo:[9]
                                                               
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Onde,
 = Viscosidade do meio;
 = Velocidade da particula;
 = Força aleatória.
Vale ressaltar que  é uma força que mantêm a agitação das partículas em suspensão, sendo atribuída a força gerada pelas moléculas do fluido nas partículas suspensas.
Langevin demonstrou que a variância da velocidade é dada por:
                                                         
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Onde,
= Constante a ser calculada;
 = Viscosidade do meio;
= Tempo.
Desse modo, para tempo longos, a função exponencial tende a zero, assim:
                                                              
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Levando em conta fatores como a energia cinética média das partículas, Langevin demonstra que:
                                                              
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Onde,
 = Constante de Boltzmann;
T = Temperatura do meio externo.
Dessa maneira, para tempos suficientemente longos, a teoria de Langevin é equivalente as propostas de Einstein sobre o Movimento Browniano.

Analogia do Marinheiro bêbado[editar | editar código-fonte]

Uma maneira simples de compreender o processo de difusão do Movimento Browniano é o passeio ao acaso em uma dimensão, que pode ser exemplificado pelo "problema do marinheiro bêbado".
Um marinheiro bêbado andando em linha reta, no eixo X, partindo de um poste dá sempre passos do mesmo tamanho. Tendo a possibilidade de caminhar para frente ou para trás. Qual será a sua distancia do poste após N passos?
Sendo  a posição após n passos. temos então:



O que resulta em:
, mas 

ou seja:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Sendo:
N - o número de passos dados
l - o tamanho dos passos